Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 196
1.
Metab Brain Dis ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727934

Aging is a multifaceted and progressive physiological change of the organism categorized by the accumulation of deteriorating processes, which ultimately compromise the biological functions. The objective of this study was to investigate the anti-aging potential of berberine (BBR) in D-galactose (D-Gal) induced aging in rat models. In this study, male Wistar rats were divided into four groups: The control group was given only vehicle, the BBR group was treated with berberine orally, the D-Gal group was treated with D-galactose subcutaneously and the BBR + D-Gal group was treated with D-galactose and berberine simultaneously. D-galactose exposure elevated the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl and advanced oxidation protein products (AOPP) in the brain. It decreased the anti-oxidants such as reduced glutathione (GSH) and ferric reducing antioxidant potential (FRAP) in the brain. D-galactose treatment also reduced the mitochondrial complexes (I, II, III and IV) activities and elevated the inflammatory markers such as interleukine-6 (IL-6), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP). The mRNA expressions of IL-6 and TNF-α in the brain were upregulated following D-galactose exposure. Berberine co-treatment in D-galactose induced aging rat model prevented the alteration of pro-oxidant and anti-oxidant in the brain. Berberine treatment restored the mitochondrial complex activities in the brain and also normalized the inflammatory markers. Based on these findings we conclude that berberine treatment has the potential to mitigate brain aging in rats via stabilizing the redox equilibrium and neuroinflammation.

2.
AoB Plants ; 16(2): plae014, 2024 Feb.
Article En | MEDLINE | ID: mdl-38566894

Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.

3.
Microbiol Res ; 283: 127673, 2024 Jun.
Article En | MEDLINE | ID: mdl-38484575

The rich diversity of microbial endophytic communities associated with plants, often referred to as the second genome, serves as a compelling illustration of efficient co-evolution. This noteworthy partnership plays a pivotal role in sustaining plant well-being and enhancing plant adaptability across diverse habitats. Therefore, examining the diversity of endophytic microbes associated with their particular host plant is valuable for gaining insights into the vast spectrum of plant-microbe interactions. The present experiments aimed at investigating the bacterial endophytic diversity in both root and shoot tissues of Pelargonium graveolens, employing culture dependent and culture independent high-throughput metagenomics approach. A total of 614 and 620 operational taxonomic units (OTUs), encompassing 291 and 229 genera, were identified in the shoot and root tissues of P. graveolens, respectively. Furthermore, the subsequent classification of OTUs revealed 15 highly abundant phyla, with Proteobacteria dominating both root and shoot tissues. Notably, an exceptionally high abundance of Firmicutes phyla was observed in the shoot compared to the root. Additionally, 30 bacterial endophytes from the root, stem, petiole, and leaves were isolated and molecularly characterized, unveiling a consistent pattern of diversity distribution between the root and shoot of P. graveolens. Upon screening all isolates for plant growth promoting traits, Pseudomonas oryzihabitans was found to be positive for major biochemical test like nitrogen fixation, phosphate solubilization etc. and on inoculation resulted in about two-fold increase in content of essential oil accompanied by a significant rise in the geraniol and citronellol content. Diving deep into the genetic constitution of P. oryzihabitans unveiled a substantial number of genes directly and indirectly contributing to the endophyte's capability in colonizing host plants effectively. In summary, data obtained from metagenomics and culture dependent approaches including glass house trials suggest potential bacterial endophytes suitable for field applications for yield enhancement and in planta secondary metabolite enhancement investigations.


Microbiota , Pelargonium , Bacteria , Endophytes , Firmicutes , Plants , Plant Roots/microbiology
4.
Cureus ; 16(1): e51800, 2024 Jan.
Article En | MEDLINE | ID: mdl-38322078

Background The causal attributions we make to the events in our lives reflect our Cognitive Style. The use of substances can be precipitated by stressful life events, and substance use can be a result of maladaptive coping to alleviate negative effects in stressful situations. So, individuals with substance dependence may infer situations differently. The inferences made about the cause of these stressful events can give an understanding of their cognition and can further help in therapeutic interventions. Purpose The present study aims to assess the cognitive style of young patients with substance use disorder. Methods A cross-sectional research design was used and a total of 50 participants were chosen through purposive sampling from the in-patient departments of Psychiatric Hospitals and De-addiction centers. The Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST) was used to assess the specific substances used by the patients and the Cognitive Style Questionnaire-Short form (CSQ-SF) was used to assess the negative cognitive style of the patients. Results Results revealed a more negative cognitive style among young patients with Dual Substance Use than patients with Multiple Substance Use, indicating that patients with Substance Use Disorder tend to attribute stressful events to causes like internal (because of self), global (applicable to all domains of life) and stable (consistent), as well as the negative consequences (leading to other bad things) and self-worth implications (something wrong in self).

5.
Indian J Med Res ; 159(1): 91-101, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38344919

BACKGROUND OBJECTIVES: The clinical course of COVID-19 and its prognosis are influenced by both viral and host factors. The objectives of this study were to develop a nationwide platform to investigate the molecular epidemiology of SARS-CoV-2 (Severe acute respiratory syndrome Corona virus 2) and correlate the severity and clinical outcomes of COVID-19 with virus variants. METHODS: A nationwide, longitudinal, prospective cohort study was conducted from September 2021 to December 2022 at 14 hospitals across the country that were linked to a viral sequencing laboratory under the Indian SARS-CoV-2 Genomics Consortium. All participants (18 yr and above) who attended the hospital with a suspicion of SARS-CoV-2 infection and tested positive by the reverse transcription-PCR method were included. The participant population consisted of both hospitalized as well as outpatients. Their clinical course and outcomes were studied prospectively. Nasopharyngeal samples collected were subjected to whole genome sequencing to detect SARS-CoV-2 variants. RESULTS: Of the 4972 participants enrolled, 3397 provided samples for viral sequencing and 2723 samples were successfully sequenced. From this, the evolution of virus variants of concern including Omicron subvariants which emerged over time was observed and the same reported here. The mean age of the study participants was 41 yr and overall 49.3 per cent were female. The common symptoms were fever and cough and 32.5 per cent had comorbidities. Infection with the Delta variant evidently increased the risk of severe COVID-19 (adjusted odds ratio: 2.53, 95% confidence interval: 1.52, 4.2), while Omicron was milder independent of vaccination status. The independent risk factors for mortality were age >65 yr, presence of comorbidities and no vaccination. INTERPRETATION CONCLUSIONS: The authors believe that this is a first-of-its-kind study in the country that provides real-time data of virus evolution from a pan-India network of hospitals closely linked to the genome sequencing laboratories. The severity of COVID-19 could be correlated with virus variants with Omicron being the milder variant.


COVID-19 , Female , Humans , Male , Disease Progression , Hospitals , Prospective Studies , SARS-CoV-2/genetics , Adult , Adolescent , Aged , Middle Aged
6.
Reprod Biol ; 24(2): 100862, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38402721

Calpain role has been shown in the cumulus cell-oocyte complexes and, corpus luteum. We investigated the association of calpains-1 and -2 in ovarian folliculogenesis using the Sprague-Dawley (SD) rat model and steroidogenesis in the human granulosa cells (hGCs). We induced PCOS in 42-day-old SD rats by letrozole oral gavage for 21 days. Premature ovarian failure (POF) was induced in 21-day-old SD rats by 4-vinylcyclohexene diepoxide (VCD). Ovulation and ovarian hyperstimulatory (OHS) syndrome were induced by pregnant mare gonadotropin (PMSG) + human chorionic gonadotropin (hCG) treatments in 21 days SD rats, respectively. Steroidogenesis is stimulated in human granulosa cells (hGCs) by forskolin and the response of 17-beta-estradiol (E2) on calpains expression was checked in hGCs. The protein expression by immunoblotting and activity by biochemical assay of calpains-1 and -2 showed an oscillating pattern in the ovarian cycle. PMSG-induced follicular recruitment showed upregulation of calpains-1 and -2, but with no change during ovarian function cessation (POF). Upregulated calpain-2 expression and calpain activity was found in the hCG +PMSG-induced ovulation. Letrozole-induced PCOS showed downregulation of calpain-1, but upregulation of calpain-2. PMSG+hCG-induced OHS led to the upregulation of calpain-1. Letrozole and metformin separately increased the expression level of calpains-1 and -2 in the hGCs during luteinization. In conclusion, the expression levels of calpains -1 and -2 are increased with ovarian follicular recruitment by PMSG and calpain-1 is decreased in the PCOS condition, and letrozole and metformin upregulate the expression of calpains-1 and -2 during luteinization in the hGCs possibly via E2 action.

7.
J Clin Pathol ; 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191270

AIMS: This retrospective study emphasises the need of awareness for clinicopathological attributes of Indian childhood cirrhosis (ICC) in order to enable timely diagnosis and management. METHODS: This study was done on liver archival tissue of our department from the period of January 2016 to December 2022. Of these, cases of copper overload on paediatric biopsies were retrieved. The histopathological features were scrutinised independently by three pathologists, correlating with their clinico-radiological investigations. RESULTS: Five children in infancy to middle childhood presented with features of chronic liver disease in the form of jaundice and abdominal distention, were included in the study. Characteristic firm hepatomegaly with sharp margins and transaminitis was noted in all cases. Autoimmune, viral and metabolic workup were negative in all these patients except one which showed positive autoimmunity and another whose Coomb's test was positive. Normal ceruloplasmin levels and unremarkable slit lamp examination excluded the possibility of Wilson's disease. The histological features of marked ballooning degeneration with diffuse Mallory Denk, pericellular fibrosis, absence of steatosis and panlobular copper deposits clinched the diagnosis of ICC. CONCLUSIONS: ICC once believed to be extinct has still not vanished and remains underdiagnosed in routine practice. It is a rapidly fatal disease with a debatable pattern of inheritance and controversial role of copper as etiological agent. The clinical presentation is often deceptive and lack of awareness leads to misdiagnosis. Histopathological attributes are pathognomonic and possibility of ICC should be kept in all cases of cryptogenic cirrhosis.

9.
Article En | MEDLINE | ID: mdl-38279753

Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.

10.
Int J Biol Macromol ; 257(Pt 1): 127945, 2024 Feb.
Article En | MEDLINE | ID: mdl-37951434

MicroRNAs (miRNAs) play a crucial role in cancer progression by selectively inducing translational degradation of messenger RNA (mRNA) via sequence-specific interactions with the 3'-untranslated region (3'-UTR). The potential targeting of miRNA has been recognized as a significant avenue for investigating the biological progression of diverse cancer types. Consequently, targeting of pri-miRNA and pre-miRNA by phytochemicals emerges as a viable strategy in the realm of anticancer therapies. Among phytochemicals, triterpenoids have garnered significant recognition for their chemotherapeutic and chemopreventive capabilities in combating multiple cancers. To date, there is a dearth of literature about the molecular interactions between triterpenoids and miRNAs. The primary objective of this investigation is to discern the potential triterpenoids that can function as modulators for specific miRNAs, namely pri-miRNA-19b-2, pre-miR21, microRNA 20b, pri-miRNA-208a, pri-miRNA-378a, pri-miRNA-320b-2, and pri-miRNA-300, achieved through the use of in silico investigations. The study primarily focused on performing drug-likeness, computer-aided toxicity, and pharmacokinetic prediction studies for triterpenoids. Furthermore, molecular docking and simulation techniques were employed to investigate these compounds. The triterpenoids studied were shown to have drug-likeness characteristics, although asiatic acid, lupeol, and pristimerin were able to pass all toxicity tests. Among the triterpenoids that underwent docking, pristimerin had a significant binding energy of -10.9 kcal/mol during its interaction with pri-miR-378a. The stable interaction between the pristimerin and miRNA complex was demonstrated by molecular dynamics simulation. As a result, pristimerin has the potential to act as a modulator of carcinogenic miRNAs, making it a promising candidate for cancer prevention and treatment due to its tailored modulation of miRNA activity.


MicroRNAs , Neoplasms , Pentacyclic Triterpenes , Triterpenes , Humans , RNA Processing, Post-Transcriptional , Triterpenes/pharmacology , Angiogenesis , Molecular Docking Simulation , RNA Precursors/metabolism , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Cell Proliferation
11.
Anat Cell Biol ; 57(1): 147-151, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38115734

Atlanto-occipital assimilation is an osseous embryological anomaly of the craniovertebral junction in which the atlas (C1) is fused to the occiput of skull. Embryologically, this assimilation may happen due to failure of the segmentation and separation of the caudal occipital and the cranial cervical sclerotome. The segmentation clock is maintained by NOTCH and WNT signalling pathways along with Hox genes and retinoic acid. This condition is likely to be a consequence of mutation in above mentioned genes. The knowledge of this assimilation may be crucial for the clinicians as it may lead to various neurovascular symptoms. The present case report involves the analysis of atlanto-occipital assimilation with its clinical significance and embryological basis.

12.
JMIR Mhealth Uhealth ; 11: e43105, 2023 12 14.
Article En | MEDLINE | ID: mdl-38096007

BACKGROUND: The COVID-19 pandemic influenced many to consider methods to reduce human contact and ease the burden placed on health care workers. Conversational agents or chatbots are a set of technologies that may aid with these challenges. They may provide useful interactions for users, potentially reducing the health care worker burden while increasing user satisfaction. Research aims to understand these potential impacts of chatbots and conversational recommender systems and their associated design features. OBJECTIVE: The objective of this study was to evaluate user perceptions of the helpfulness of an artificial intelligence chatbot that was offered free to the public in response to COVID-19. The chatbot engaged patients and provided educational information and the opportunity to report symptoms, understand personal risks, and receive referrals for care. METHODS: A cross-sectional study design was used to analyze 82,222 chats collected from patients in South Carolina seeking services from the Prisma Health system. Chi-square tests and multinomial logistic regression analyses were conducted to assess the relationship between reported risk factors and perceived chat helpfulness using chats started between April 24, 2020, and April 21, 2022. RESULTS: A total of 82,222 chat series were started with at least one question or response on record; 53,805 symptom checker questions with at least one COVID-19-related activity series were completed, with 5191 individuals clicking further to receive a virtual video visit and 2215 clicking further to make an appointment with a local physician. Patients who were aged >65 years (P<.001), reported comorbidities (P<.001), had been in contact with a person with COVID-19 in the last 14 days (P<.001), and responded to symptom checker questions that placed them at a higher risk of COVID-19 (P<.001) were 1.8 times more likely to report the chat as helpful than those who reported lower risk factors. Users who engaged with the chatbot to conduct a series of activities were more likely to find the chat helpful (P<.001), including seeking COVID-19 information (3.97-4.07 times), in-person appointments (2.46-1.99 times), telehealth appointments with a nearby provider (2.48-1.9 times), or vaccination (2.9-3.85 times) compared with those who did not perform any of these activities. CONCLUSIONS: Chatbots that are designed to target high-risk user groups and provide relevant actionable items may be perceived as a helpful approach to early contact with the health system for assessing communicable disease symptoms and follow-up care options at home before virtual or in-person contact with health care providers. The results identified and validated significant design factors for conversational recommender systems, including triangulating a high-risk target user population and providing relevant actionable items for users to choose from as part of user engagement.


Artificial Intelligence , COVID-19 , Humans , Cross-Sectional Studies , Aftercare , Pandemics , COVID-19/epidemiology , Personal Satisfaction
13.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38088364

Curcumin, a biphenolic substance derived from turmeric (Curcuma longa), offers a number of health-beneficial effects, including anti-inflammatory, cardiovascular protection, anti-cancerous, and anti-angiogenic. By interacting with the PPARγ (Peroxisome Proliferator-Activated Receptor-γ), curcumin inhibits NF-κB. These biological outcomes seem to be the outcome of NF-κB inhibition mediated by curcumin. The current study explores the in vivo impact of curcumin on several inflammatory parameters during aging in Wistar rats. An in-silico docking simulation study using Maestro and Desmond, Schrödinger, was carried out to further validate the experimental findings. According to our observation, rats given curcumin supplementation had a considerably (p ≤ 0.05) reduced level of inflammation. By generating numerous polar and hydrophobic interactions and exhibiting little conformational deviation throughout the simulation, in silico investigations showed that the proposed ligand curcumin had a high affinity for the enzyme COX-2. During simulation, protein-ligand complexes of curcumin with the other targets viz. 5-LOX, TNF-α and IL-6 also demonstrated improved binding and minimal fluctuation. The COX-2 and 5-LOX enzymes and the cytokines (TNF-α and IL-6) implicated in inflammation may have been inhibited by curcumin, highlighting its function as a multi-target inhibitor. Our study provides convincing support for the idea that eating a diet high in curcumin may help to reduce inflammation and help to explain some of its health-beneficial effects.Communicated by Ramaswamy H. Sarma.

14.
Microb Cell Fact ; 22(1): 226, 2023 Nov 04.
Article En | MEDLINE | ID: mdl-37925404

Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.


Endophytes , Plants, Medicinal , Humans , Endophytes/metabolism , Ecosystem , Fungi/metabolism , Biodiversity
15.
J Biotechnol ; 377: 34-42, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37848135

Flavour molecules are generated now-a-days through microbial fermentation on a commercial scale. γ-Decalactone (GDL) is an important molecule due to its long-lasting flavouring impact as buttery, coconut and peach-type. In the current study, 33 microorganisms were isolated from different fruit sources, and their screening for target GDL production was performed. Using DNA sequencing, two potential strains yielding good amounts of GDL were identified from pineapple and strawberry fruits. The identified strains were Metschnikowia vanudenii (OP954735) and Candida parapsilosis (OP954733), and further optimized by Taguchi method. The effectiveness of lactone production is influenced by the rate of microbial growth under various operating conditions. The factors such as substrate concentration, pH, temperature, cell density and rotation (rpm) with 3 levels were applied for the GDL production using M. vanudenii (OP954735) and C. parapsilosis (OP954733) strains. The results revealed that the highest molar conversion of GDL was 24.69% (115.7 mg/g quantitative yield) and 52.69% (272.0 mg/g quantitative yield) at the optimal conditions using SB-62 and PA-19 strains, respectively. The two novel strains are reported for the first time for production of γ-decalactone and overall, this study opens up the possibility of using Taguchi design for large scale up process development for producing food flavours utilising environmentally friendly natural strains.


Lactones , Yeasts , Yeasts/genetics , Yeasts/metabolism , Lactones/chemistry , Biotransformation
16.
Sci Rep ; 13(1): 17416, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833337

Central Arctic, interglacial intervals have traditionally been associated with diverse and intense bioturbation, and abundant foraminifera, interpreted as indicating relatively low sea-ice concentrations and productive surface waters, while glacial intervals, typically barren, support the inverse. In this respect, the Yermak Plateau is anomalous. Biomarker studies suggest that glacial intervals were characterized by comparatively open water, while interglacials are marked by severe sea-ice conditions. Here we study downcore Ethological Ichno Quotient (EIQ) variations in trace fossils and bioturbation to test the hypothesis that different ethological classes vary in accordance with late Pleistocene changes in sea-ice extent, with deposit feeders increasing during reduced sea-ice cover and chemosymbiotic traces increasing during periods of thick perennial sea-ice conditions. Our results generally demonstrate that the abundance of traces like Planolites, Scolicia, and burrows produced by deposit feeders increase during episodes of seasonal sea-ice cover. In contrast, intervals with more severe sea-ice conditions are characterized by chemosymbiotic traces such as Chondrites and Trichichnus/Mycellia, suggesting lower food delivery and poorly ventilated bottom water conditions. The study thus confirms previous reconstructions of sea-ice conditions on the Yermak Plateau during interglacials, demonstrating that bioturbation variation provides insights into bentho-pelagic coupling under variable sea ice regimes in the Arctic Ocean.


Ice Cover , Water , Arctic Regions
17.
Plants (Basel) ; 12(19)2023 Oct 08.
Article En | MEDLINE | ID: mdl-37836241

Grasspea (Lathyrus sativus L.) is recognized as a highly drought-tolerant legume. However, excessive consumption of its seeds and green tissues causes neurolathyrism, a condition characterized by an irreversible paralysis of the legs induced by a neurotoxin amino acid called ß-N-oxalyl-L-α, ß- diaminopropionic acid (ß-ODAP). The present study investigated the effects of heat, and combined heat + drought during the reproductive phase on physiological and phenological parameters, yield-related factors, ODAP content, and seed protein of 24 genotypes representing 11 Lathyrus species under controlled conditions. Analysis of variance revealed a highly significant effect (p < 0.001) of stress treatments and genotypes for all the traits. In general, heat stress individually or in combination with drought expedited phenology, reduced relative leaf water content, stimulated proline synthesis, and influenced chlorophyll concentration; the effects were more severe under the combined heat + drought stress. ODAP content in seeds ranged from 0.06 to 0.30% under no-stress conditions. However, under heat stress, there was a significant increase of 33% in ODAP content, and under combined stress (heat + drought), the increase reached 83%. Crude protein content ranged from 15.64 to 28.67% among no stress plants and decreased significantly by 23% under heat stress and by 36% under combined stress. The findings of this study also indicated substantial reductions in growth and grain yield traits under both heat stress and combined heat + drought stress. Six accessions namely IG 66026, IG 65018, IG 65687, IG 118511, IG 64931, and IG65273 were identified as having the most favorable combination of yield, protein content, and seed ODAP levels across all conditions. ODAP content in these six accessions varied from 0.07 to 0.11% under no stress and remained at moderate levels during both heat stress (0.09-0.14%) and combined stress (0.11-0.17%). IG 66026 was identified as the most stable genotype under drought and heat stress conditions with high protein content, and low ODAP content. By identifying those promising accessions, our results have established a basis for forthcoming grasspea breeding initiatives while paving the way for future research exploration into the fundamental mechanisms driving ODAP variation in the presence of both heat and drought stress conditions.

18.
J Mater Chem B ; 11(45): 10761-10777, 2023 11 22.
Article En | MEDLINE | ID: mdl-37807713

The field of injectable hydrogels has demonstrated a paramount headway in the myriad of biomedical applications and paved a path toward clinical advancements. The innate superiority of hydrogels emerging from organic constitution has exhibited dominance in overcoming the bottlenecks associated with inorganic-based hydrogels in the biological milieu. Inorganic hydrogels demonstrate various disadvantages, including limited biocompatibility, degradability, a cumbersome synthesis process, high cost, and ecotoxicity. The excellent biocompatibility, eco-friendliness, and manufacturing convenience of organo-hydrogels have demonstrated to be promising in therapizing biomedical complexities with low toxicity and augmented bioavailability. This report manifests the realization of biomimetic organo-hydrogels with the development of bioresponsive and self-healing injectable organo-hydrogels in the emerging pharmaceutical revolution. Furthermore, the influence of click chemistry in this regime as a backbone in the pharmaceutical conveyor belt has been suggested to scale up production. Moreover, we propose an avant-garde design stratagem of developing a hyaluronic acid (HA)-based injectable organo-hydrogel via click chemistry to be realized for its pharmaceutical edge. Ultimately, injectable organo-hydrogels that materialize from academia or industry are required to follow the standard set of rules established by global governing bodies, which has been delineated to comprehend their marketability. Thence, this perspective narrates the development of injectable organo-hydrogels via click chemistry as a prospective elixir to have in the arsenal of pharmaceuticals.


Hydrogels , Tissue Engineering , Click Chemistry , Prospective Studies , Hyaluronic Acid
19.
Front Plant Sci ; 14: 1209288, 2023.
Article En | MEDLINE | ID: mdl-37810385

Mungbean (Vigna radiata L. Wilczek) is one of the important warm-season food legumes, contributing substantially to nutritional security and environmental sustainability. The genetic complexity of yield-associated agronomic traits in mungbean is not well understood. To dissect the genetic basis of phenological and agronomic traits, we evaluated 153 diverse mungbean genotypes for two phenological (days to heading and days to maturity) and eight agronomic traits (leaf nitrogen status using SPAD, plant height, number of primary branches, pod length, number of pods per plant, seeds per pod, 100-seed weight, and yield per plant) under two environmental conditions. A wide array of phenotypic variability was apparent among the studied genotypes for all the studied traits. The broad sense of heritability of traits ranged from 0.31 to 0.95 and 0.21 to 0.94 at the Delhi and Ludhiana locations, respectively. A total of 55,634 genome-wide single nucleotide polymorphisms (SNPs) were obtained by the genotyping-by-sequencing method, of which 15,926 SNPs were retained for genome-wide association studies (GWAS). GWAS with Bayesian information and linkage-disequilibrium iteratively nested keyway (BLINK) model identified 50 SNPs significantly associated with phenological and agronomic traits. In total, 12 SNPs were found to be significantly associated with phenological traits across environments, explaining 7%-18.5% of phenotypic variability, and 38 SNPs were significantly associated with agronomic traits, explaining 4.7%-27.6% of the phenotypic variability. The maximum number of SNPs (15) were located on chromosome 1, followed by seven SNPs each on chromosomes 2 and 8. The BLAST search identified 19 putative candidate genes that were involved in light signaling, nitrogen responses, phosphorus (P) transport and remobilization, photosynthesis, respiration, metabolic pathways, and regulating growth and development. Digital expression analysis of 19 genes revealed significantly higher expression of 12 genes, viz. VRADI01G08170, VRADI11G09170, VRADI02G00450, VRADI01G00700, VRADI07G14240, VRADI03G06030, VRADI02G14230, VRADI08G01540, VRADI09G02590, VRADI08G00110, VRADI02G14240, and VRADI02G00430 in the roots, cotyledons, seeds, leaves, shoot apical meristems, and flowers. The identified SNPs and putative candidate genes provide valuable genetic information for fostering genomic studies and marker-assisted breeding programs that improve yield and agronomic traits in mungbean.

20.
J Mater Chem B ; 11(45): 10967-10968, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37872812

Correction for 'Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution' by Abhyavartin Selvam et al., J. Mater. Chem. B, 2023, https://doi.org/10.1039/d3tb01674a.

...